

    
      Navigation

      
        	
          index

        	
          next |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Annotator documentation


Warning

Beware: rapidly changing documentation!

This is the bleeding-edge documentation for Annotator which will be changing
rapidly as we home in on Annotator v2.0. Information here may be inaccurate,
prone to change, and otherwise unreliable. You may well want to consult the
stable documentation [http://docs.annotatorjs.org/en/v1.2.x/] instead.



This is where you can find out about Annotator, an open-source JavaScript
library for building annotation systems on the web. At its simplest, Annotator
allows you to start selecting text and annotating a document with a few lines of
code:

var annotator = new Annotator(document.body);





But Annotator is also a loosely-coupled set of components that you can use to
build your own annotation-based applications:

var annotator = new Annotator.Core.Annotator()
    .setStorage(Annotator.Storage.HTTPStorage)
    .addPlugin(Annotator.Plugin.DefaultUI(document.body))
    .addPlugin(Annotator.Plugin.Filter())
    .addPlugin(function (registry) {
        return {
            onAnnotationCreated: function (ann) {
                console.log("Annotation was created: ", ann);
            }
        }
    });





You can use the table of contents below to learn how to use Annotator and its
various components.

Contents:



	Getting started with Annotator
	The Annotator libraries

	Setting up Annotator

	Options

	Setting up the default plugins

	Adding more plugins

	Saving annotations





	Annotation format

	Authentication
	What’s the authentication system for?

	Technical overview

	Technical specification

	Colophon





	Permissions plugin
	Interface Overview

	Usage





	Internationalisation and localisation (I18N, L10N)
	For users

	For translators

	For developers





	Plugins
	Filter plugin

	Markdown Plugin

	Tags plugin

	Unsupported plugin





	Storage
	Auth plugin

	Annotator.Storage.HTTPStorage component

	Core storage API

	Search API

	Storage Implementations





	Plugin development
	Getting Started

	Extending Annotator.Plugin

	Annotator.Plugin API

	Annotator Events





	Annotator Roadmap
	2.0

	2.1

	2.2

	2.3












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Getting started with Annotator


The Annotator libraries

To get the Annotator up and running on your website you’ll need to
either link to a hosted version or deploy the Annotator source files
yourself. Details of both are provided below.


Note

If you are using Wordpress there is also a Annotator Wordpress
plugin [http://wordpress.org/extend/plugins/annotator-for-wordpress/]
which will take care of installing and integrating Annotator for you.




Hosted Annotator Library

For each Annotator release, we make available the following assets:

http://assets.annotateit.org/annotator/{version}/annotator-full.min.js
http://assets.annotateit.org/annotator/{version}/annotator.min.js
http://assets.annotateit.org/annotator/{version}/annotator.{pluginname}.min.js
http://assets.annotateit.org/annotator/{version}/annotator.min.css





Use annotator-full.min.js if you want to include both the core and
all plugins in a single file. Use annotator.min.js if you need only
the core. You can add individual plugins by including the relevant
annotator.pluginname.min.js files.

For example, a full version of the Annotator can be loaded with the
following code:

<script src="http://assets.annotateit.org/annotator/v1.2.5/annotator-full.min.js"></script>
<link rel="stylesheet" href="http://assets.annotateit.org/annotator/v1.2.5/annotator.min.css">








Deploy the Annotator Locally

To do this visit the download
area [http://github.com/okfn/annotator/downloads] and grab the latest
version. This contains the Annotator source code as well as the plugins
developed as part of the Annotator project.




Including Annotator on your webpage

You need to link the Annotator Javascript and CSS into the page.


Note

Annotator requires jQuery 1.6 or greater.



<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7/jquery.min.js"></script>
<script src="http://assets.annotateit.org/annotator/v1.1.0/annotator-full.min.js"></script>
<link rel="stylesheet" href="http://assets.annotateit.org/annotator/v1.1.0/annotator.min.css">










Setting up Annotator

Setting up Annotator requires only a single line of code. Use jQuery to
select the element that you would like to annotate eg.
<div id="content">...</div> and call the .annotator() method on
it:

jQuery(function ($) {
    $('#content').annotator();
});





Annotator will now be loaded on the #content element. Select some
text to see it in action.




Options

You can optionally specify options:


	readOnly

	True to allow viewing annotations, but not creating or editing them.
Defaults to false.



jQuery(function ($) {
    $('#content').annotator({
        readOnly: true
    });
});








Setting up the default plugins

We include a special setup function in the annotator-full.min.js
file that installs all the default plugins for you automatically. To run
it just add a call to .annotator("setupPlugins").

jQuery(function ($) {
    $('#content').annotator()
                 .annotator('setupPlugins');
});





This will set up the following:


	The Tags, Filter &
Unsupported plugins.

	The Auth, Permissions and
Store plugins, for interaction with the AnnotateIt
store [http://annotateit.org].

	If the Showdown [https://github.com/coreyti/showdown] library has
been included on the page the Markdown Plugin will also
be loaded.



You can further customise the plugins by providing an object containing
options for individual plugins. Or to disable a plugin set it’s
attribute to false.

jQuery(function ($) {
    // Customise the default plugin options with the third argument.
    $('#content').annotator()
                 .annotator('setupPlugins', {}, {
                   // Disable the tags plugin
                   Tags: false,
                   // Filter plugin options
                   Filter: {
                     addAnnotationFilter: false, // Turn off default annotation filter
                     filters: [{label: 'Quote', property: 'quote'}] // Add a quote filter
                   }
                 });
});








Adding more plugins

To add a plugin first make sure that you’re loading the script into the
page. Then call .annotator('addPlugin', 'PluginName') to load the
plugin. Options can also be passed to the plugin as additional
parameters after the plugin name.

Here we add the tags plugin to the page:

jQuery(function ($) {
    $('#content').annotator()
                 .annotator('addPlugin', 'Tags');
});





For more information on available plugins check the navigation to the right of
this article. Or to create your own check the creating a plugin section.




Saving annotations

In order to keep your annotations around longer than a single page view
you’ll need to set up a store on your server or use an external service
like AnnotateIt [http://annotateit.org]. For more information on
storing annotations check out the Store Plugin on the wiki.







          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Annotation format

An annotation is a JSON document that contains a number of fields
describing the position and content of an annotation within a specified
document:

{
  "id": "39fc339cf058bd22176771b3e3187329",  # unique id (added by backend)
  "annotator_schema_version": "v1.0",        # schema version: default v1.0
  "created": "2011-05-24T18:52:08.036814",   # created datetime in iso8601 format (added by backend)
  "updated": "2011-05-26T12:17:05.012544",   # updated datetime in iso8601 format (added by backend)
  "text": "A note I wrote",                  # content of annotation
  "quote": "the text that was annotated",    # the annotated text (added by frontend)
  "uri": "http://example.com",               # URI of annotated document (added by frontend)
  "ranges": [                                # list of ranges covered by annotation (usually only one entry)
    {
      "start": "/p[69]/span/span",           # (relative) XPath to start element
      "end": "/p[70]/span/span",             # (relative) XPath to end element
      "startOffset": 0,                      # character offset within start element
      "endOffset": 120                       # character offset within end element
    }
  ],
  "user": "alice",                           # user id of annotation owner (can also be an object with an 'id' property)
  "consumer": "annotateit",                  # consumer key of backend
  "tags": [ "review", "error" ],             # list of tags (from Tags plugin)
  "permissions": {                           # annotation permissions (from Permissions/AnnotateItPermissions plugin)
    "read": ["group:__world__"],
    "admin": [],
    "update": [],
    "delete": []
  }
}





Note that this annotation includes some info stored by plugins (notably
the plugins/permissions and Tags plugin).

This basic schema is completely extensible. It can be added to by
plugins, and any fields added by the frontend should be preserved by
backend implementations. For example, the plugins/store (which adds
persistence of annotations) allow you to specify arbitrary additional
fields using the annotationData attribute.





          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Authentication


What’s the authentication system for?

The simplest way to explain the role of the authentication system is by
example. Consider the following:


	Alice builds a website with documents which need annotating, DocLand.

	Alice registers DocLand with AnnotateIt, and receives a “consumer
key/secret” pair.

	Alice’s users (Bob is one of them) login to her DocLand, and receive
an authentication token, which is a cryptographic combination of
(among other things) their unique user ID at DocLand, and DocLand’s
“consumer secret”.

	Bob’s browser sends requests to AnnotateIt to save annotations, and
these include the authentication token as part of the payload.

	AnnotateIt can verify the Bob is a real user from DocLand, and thus
stores his annotation.



So why go to all this trouble? Well, the point is really to save you
trouble. By implementing this authentication system (which shares key
ideas with the industry standard OAuth) you can provide your users with
the ability to annotate documents on your website without needing to
worry about implementing your own Annotator backend. You can use
AnnotateIt [http://annotateit.org] to provide the backend: all you
have to do is implement a token generator on your website (described
below).

This is the simple explanation, but if you’re in need of more technical
details, keep reading.




Technical overview

How do we authorise users’ browsers to create annotations on a
Consumer’s behalf? There are three (and a half) entities involved:


	The Service Provider (SP; AnnotateIt in the above example)

	The Consumer (C; DocLand)

	The User (U; Bob), and the User Agent (UA; Bob’s browser)



Annotations are stored by the SP, which provides an API that the
Annotator’s “Store” plugin understands.

Text to be annotated, and configuration of the clientside Annotator, is
provided by the Consumer.

Users will typically register with the Consumer – we make no
assumptions about your user registration/authentication process other
than that it exists – and the UA will, when visiting appropriate
sections of C’s site, request an authToken from C. Typically, an
authToken will only be provided if U is currently logged into C’s
site.




Technical specification

It’s unlikely you’ll need to understand all of the following to get up
and running using AnnotateIt – you can probably just copy and paste the
Python example given below – but it’s worth reading what follows if
you’re doing anything unusual (such as giving out tokens to
unauthenticated users).

The Annotator authToken is a type of JSON Web
Token [http://openid.net/specs/draft-jones-json-web-token-07.html].
This document won’t describe the details of the JWT specification, other
than to say that the token payload is signed by the consumer secret with
the HMAC-SHA256 algorithm, allowing the backend to verify that the
contents of the token haven’t been interfered with while travelling from
the consumer. Numerous language implementations exist already
(PyJWT [http://pypi.python.org/pypi/PyJWT],
jwt [https://rubygems.org/gems/jwt] for Ruby,
php-jwt [https://github.com/progrium/php-jwt],
JWT-CodeIgniter [https://github.com/b3457m0d3/JWT-CodeIgniter]...).

The required contents of the token payload are:








	key
	description
	example




	consumerKey
	the consumer key issued by the backend store
	"602368a0e905492fae87697edad14c3a"


	userId
	the consumer’s unique identifier for the user to whom the token was issued
	"alice"


	issuedAt
	the ISO8601 time at which the token was issued
	"2012-03-23T10:51:18Z"


	ttl
	the number of seconds after issuedAt for which the token is valid
	86400





You may wish the payload to contain other information (e.g. userRole
or userGroups) and arbitrary additional keys may be added to the
token. This will only be useful if the Annotator client and the SP pay
attention to these keys.

Lastly, note that the Annotator frontend does not verify the
authenticity of the tokens it receives. Only the SP is required to
verify authenticity of auth tokens before authorizing a request from the
Annotator frontend.

For reference, here’s a Python implementation of a token generator,
suitable for dropping straight into your
Flask [http://flask.pocoo.org] or
Django [https://www.djangoproject.com/] project:

import datetime
import jwt

# Replace these with your details
CONSUMER_KEY = 'yourconsumerkey'
CONSUMER_SECRET = 'yourconsumersecret'

# Only change this if you're sure you know what you're doing
CONSUMER_TTL = 86400

def generate_token(user_id):
    return jwt.encode({
      'consumerKey': CONSUMER_KEY,
      'userId': user_id,
      'issuedAt': _now().isoformat() + 'Z',
      'ttl': CONSUMER_TTL
    }, CONSUMER_SECRET)

def _now():
    return datetime.datetime.utcnow().replace(microsecond=0)





Now all you need to do is expose an endpoint in your web application
that returns the token to logged-in users (say,
http://example.com/api/token), and you can set up the Annotator like so:

$(body).annotator()
       .annotator('setupPlugins', {tokenUrl: 'http://example.com/api/token'});








Colophon

Original planning documents at:


	http://lists.okfn.org/pipermail/okfn-help/2010-December/000977.html



Rehashed in Feb 2012:


	http://lists.okfn.org/pipermail/annotator-dev/2012-January/000188.html









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Warning

OUT OF DATE DOCUMENTATION

The paragraphs that follow contain out-of-date documentation that we haven’t
yet got round to updating.




Permissions plugin

This plugin handles setting the user and permissions properties on
annotations as well as providing some enhancements to the interface.


Interface Overview

The following elements are added to the Annotator interface by this
plugin.


Viewer

The plugin adds a section to a viewed annotation displaying the name of
the user who created it. It also checks the annotation’s permissions to
see if the current user can edit/delete the current annotation
and displays controls appropriately.




Editor

The plugin adds two fields with checkboxes to the annotation editor
(these are only displayed if the current user has admin permissions
on the annotation). One to allow anyone to view the annotation and one
to allow anyone to edit the annotation.






Usage

Adding the permissions plugin to the annotator is very simple. Simply
add the annotator to the page using the .annotator() jQuery plugin
and retrieve the annotator object using .data('annotator'). We now
add the plugin and pass an options object to set the current user.

var annotator = $('#content').annotator().data('annotator');
annotator.addPlugin('Permissions', {
  user: 'Alice'
});





By default all annotations are publicly viewable/editable/deleteable. We
can set our own permissions using the options object.

var annotator = $('#content').annotator().data('annotator');
annotator.addPlugin('Permissions', {
  user: 'Alice',
  permissions: {
    'read':   [],
    'update': ['Alice'],
    'delete': ['Alice'],
    'admin':  ['Alice']
  }
});





Now only our current user can edit the annotations but anyone can view
them.

The options object allows you to completely define the way permissions
are handled for your site.


	user: The current user (required).

	permissions: An object defining annotation permissions.

	userId: A callback that returns the user id.

	userString: A callback that returns the users name.

	userAuthorize: A callback that allows custom authorisation.

	showViewPermissionsCheckbox: If false hides the “Anyone can
view…” checkbox.

	showEditPermissionsCheckbox: If false hides the “Anyone can
edit…” checkbox.




user (required)

This value sets the current user and will be attached to all newly
created annotations. It can be as simple as a username string or if your
users objects are more complex an object literal.

// Simple example.
annotator.addPlugin('Permissions', {
  user: 'Alice'
});

// Complex example.
annotator.addPlugin('Permissions', {
  user: {
    id: 6,
    username: 'Alice',
    location: 'Brighton, UK'
  }
});





If you do decide to use an object for your user as well as permissions
you’ll need to also provide userId and userString callbacks. See
below for more information.




permissions

Permissions set who is allowed to do what to your annotations. There are
four actions:


	read: Who can view the annotation

	update: Who can edit the annotation

	delete: Who can delete the annotation

	admin: Who can change these permissions on the annotation



Each action should be an array of tokens. An empty array means that
anyone can perform that action. Generally the token will just be the
users id. If you need something more complex (like groups) you can use
your own syntax and provide a userAuthorize callback with your
options.

Here’s a simple example of setting the permissions so that only the
current user can perform all actions:

annotator.addPlugin('Permissions', {
  user: 'Alice',
  permissions: {
    'read':   ['Alice'],
    'update': ['Alice'],
    'delete': ['Alice'],
    'admin':  ['Alice']
  }
});





Or here is an example using numerical user ids:

annotator.addPlugin('Permissions', {
  user: {id: 6, name:'Alice'},
  permissions: {
    'read':   [6],
    'update': [6],
    'delete': [6],
    'admin':  [6]
  }
});








userId(user)

This is a callback that accepts a user parameter and returns the
identifier. By default this assumes you will be using strings for your
ids and simply returns the parameter. However if you are using a user
object you’ll need to implement this:

annotator.addPlugin('Permissions', {
  user: {id: 6, name:'Alice'},
  userId: function (user) {
    if (user && user.id) {
      return user.id;
    }
    return user;
  }
});
// When called.
userId({id: 6, name:'Alice'}) // => Returns 6





NOTE: This function should handle null being passed as a parameter.
This is done when checking a globally editable annotation.




userString(user)

This is a callback that accepts a user parameter and returns the
human readable name for display. By default this assumes you will be
using a string to represent your users name and id so simply returns the
parameter. However if you are using a user object you’ll need to
implement this:

annotator.addPlugin('Permissions', {
  user: {id: 6, name:'Alice'},
  userString: function (user) {
    if (user && user.name) {
      return user.name;
    }
    return user;
  }
});
// When called.
userString({id: 6, name:'Alice'}) // => Returns 'Alice'








userAuthorize(action, annotation, user)

This is another callback that allows you to implement your own
authorization logic. It receives three arguments:


	action: Action that is being checked, ‘update’, ‘delete’ or
‘admin’. ‘create’ does not call this callback

	annotation: The entire annotation object; note that the
permissions subobject is at annotation.permissions

	user: current user, as passed in to the permissions plugin



Your function will check to see if the user can perform an action based
on these values.

The default implementation assumes that the user is a simple string and
the tokens used (within annotation.permissions) are also strings so
simply checks that the user is one of the tokens for the current action.

// This is the default implementation as an example.
annotator.addPlugin('Permissions', {
  user: 'Alice',
    userAuthorize: function(action, annotation, user) {
      var token, tokens, _i, _len;
      if (annotation.permissions) {
        tokens = annotation.permissions[action] || [];
        if (tokens.length === 0) {
          return true;
        }
        for (_i = 0, _len = tokens.length; _i < _len; _i++) {
          token = tokens[_i];
          if (this.userId(user) === token) {
            return true;
          }
        }
        return false;
      } else if (annotation.user) {
        if (user) {
          return this.userId(user) === this.userId(annotation.user);
        } else {
          return false;
        }
      }
      return true;
    },
});
// When called.
userAuthorize('update', aliceAnnotation, 'Alice') // => Returns true
userAuthorize('Alice', bobAnnotation, 'Bob')   // => Returns false





A more complex example might involve you wanting to have a groups
property on your user object. If the user is a member of the ‘Admin’
group they can perform any action on the annotation.

// When called by a normal user. userAuthorize(‘update’,
adminAnnotation, { id: 1, group: ‘user’ }) // => Returns false

// When called by an admin. userAuthorize(‘update’, adminAnnotation, {
id: 2, group: ‘Admin’ }) // => Returns true

// When called by the owner. userAuthorize(‘update’, regularAnnotation,
ownerOfRegularAnnotation) // => Returns true ```









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Internationalisation and localisation (I18N, L10N)

Annotator now has rudimentary support for localisation of its interface.


For users

If you wish to use a provided translation, you need to add a link
tag pointing to the .po file, as well as include gettext.js
before you load the Annotator. For example, for a French translation:

<link rel="gettext" type="application/x-po" href="locale/fr/annotator.po">
<script src="lib/vendor/gettext.js"></script>





This should be all you need to do to get the Annotator interface
displayed in French.




For translators

We now use Transifex [http://transifex.net/] to manage localisation
efforts on Annotator. If you wish to contribute a translation you’ll
first need to sign up for a free account at

https://www.transifex.net/plans/signup/free/

Once you’re signed up, you can go to

https://www.transifex.net/projects/p/annotator/

and get translating!




For developers

Any localisable string in the core of Annotator should be wrapped with a
call to the gettext function, _t, e.g.

console.log(_t("Hello, world!"))





Any localisable string in an Annotator plugin should be wrapped with a
call to the gettext function, Annotator._t, e.g.

console.log(Annotator._t("Hello from a plugin!"))





To update the localisation template (locale/annotator.pot), you
should run the i18n:update Cake task:

cake i18n:update





You should leave it up to individual translators to update their
individual .po files with the locale/l10n-update tool.







          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Plugins

Annotator has a highly modular architecture, and a great deal of functionality
is provided by plugins. These pages document these plugins and how they work
together.



	Filter plugin

	Markdown Plugin

	Tags plugin

	Unsupported plugin









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Plugins 
 
      

    


    
      
          
            
  
Filter plugin

This plugin allows the user to navigate and filter the displayed
annotations.


Interface Overview

The plugin adds a toolbar to the top of the window. This contains the
available filters that can be applied to the current annotations.




Usage

Adding the Filter plugin to the annotator is very simple. Add the
annotator to the page using the .annotator() jQuery plugin. Then
call the .addPlugin() method by calling
.annotator('addPlugin', 'Filter').

var content = $('#content').annotator().annotator('addPlugin', 'Filter');






Options

There are several options available to customise the plugin.


	filters: This is an array of filter objects. These will be added
to the toolbar on load.

	addAnnotationFilter: If true this will display the default
filter that searches the annotation text.






Filters

Filters are very easy to create. The options require two properties a
label and an annotation property to search for. For example if
we wanted to filter on an annotations quoted text we can create the
following filter.

content.annotator('addPlugin', 'Filter', {
  filters: [
    {
      label: 'Quote',
      property: 'quote'
    }
  ]
});





You can also customise the filter logic that determines if an annotation
should be filtered by providing an isFiltered function. This
function receives the contents of the filter input as well as the
annotation property. It should return true if the annotation should
remain highlighted.

Heres an example that uses the annotation.tags property, which is an
array of tags:

content.annotator('addPlugin', 'Filter', {
  filters: [
    {
      label: 'Tag',
      property: 'tags',
      isFiltered: function (input, tags) {
        if (input && tags && tags.length) {
          var keywords = input.split(/\s+/g);
          for (var i = 0; i < keywords.length; i += 1) {
            for (var j = 0; j < tags.length; j += 1) {
              if (tags[j].indexOf(keywords[i]) !== -1) {
                return true;
              }
            }
          }
        }
        return false;
    }}
  ]
});













          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Plugins 
 
      

    


    
      
          
            
  
Markdown Plugin

The Markdown plugin allows you to use
Markdown [http://daringfireball.net/projects/markdown/] in your
annotation comments. It will then render them in the Viewer.


Requirements

This plugin requires that the
Showdown [http://github.com/coreyti/showdown] Markdown library be
loaded in the page before the plugin is added to the annotator. To do
this simply
download [http://github.com/coreyti/showdown/raw/master/compressed/showdown.js]
the showdown.js and include it on your page before the annotator.

<script src="javascript/jquery.js"></script>
<script src="javascript/showdown.js"></script>
<script src="javascript/annotator.min.js"></script>
<script src="javascript/annotator.markdown.min.js"></script>








Usage

Adding the Markdown plugin to the annotator is very simple. Simply add
the annotator to the page using the .annotator() jQuery plugin and
retrieve the annotator object using .data('annotator'). Then add the
Markdown plugin.

var content = $('#content').annotator();
content.annotator('addPlugin', 'Markdown');






Options

There are no options available for this plugin









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Plugins 
 
      

    


    
      
          
            
  
Tags plugin

This plugin allows the user to tag their annotations with keywords.


Interface Overview

The following elements are added to the Annotator interface by this
plugin.


Viewer

The plugin adds a section to a viewed annotation displaying any tags
that have been added.




Editor

The plugin adds an input field to the editor allowing the user to enter
a space separated list of tags.






Usage

Adding the tags plugin to the annotator is very simple. Simply add the
annotator to the page using the .annotator() jQuery plugin. Then
call the .addPlugin() method by calling
.annotator('addPlugin', 'Tags').

var content = $('#content').annotator().annotator('addPlugin', 'Tags');





There are no options available for this plugin

See this
example [https://github.com/okfn/annotator/issues/92#issuecomment-3985124]
using jQueryUI autocomplete.







          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Plugins 
 
      

    


    
      
          
            
  
Unsupported plugin

The Annotator only supports browsers that have the
window.getSelection() method (for a table of support please see
this Quirksmode
article [http://www.quirksmode.org/dom/range_intro.html#link2]). This
plugin provides a notification to users of these unsupported browsers
letting them know that the plugin has not loaded.


Usage

Adding the unsupported plugin to the annotator is very simple. Simply
add the annotator to the page using the .annotator() jQuery plugin.
Then call the .addPlugin() method eg.
.annotator('addPlugin', 'Unsupported').

var content = $('#content').annotator();
content.annotator('addPlugin', 'Unsupported');






Options

You can provide options


	message: A customised message that you wish to display to users.




message

The message that you wish to display to users.

var annotator = $('#content').annotator().data('annotator');

annotator.addPlugin('Unsupported', {
  message: "We're sorry the Annotator is not supported by this browser"
});















          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Warning

OUT OF DATE DOCUMENTATION

The paragraphs that follow contain out-of-date documentation that we haven’t
yet got round to updating.




Storage

Some kind of storage is needed to save your annotations after you leave
a web page.

To do this you can use the Annotator.Storage.HTTPStorage component and a remote JSON API. This
page describes the API expected by the Store plugin, and implemented by
the reference backend [https://github.com/okfn/annotator-store]. It
is this backend that runs the AnnotateIt [http://annotateit.org] web
service.



	Auth plugin

	Annotator.Storage.HTTPStorage component






Core storage API

The storage API is defined in terms of a prefix and a number of
endpoints. It attempts to follow the principles of
REST [http://en.wikipedia.org/wiki/Representational_state_transfer],
and emits JSON documents to be parsed by the Annotator. Each of the
following endpoints for the storage API is expected to be found on the
web at prefix + path. For example, if the prefix were
http://example.com/api, then the index endpoint would be found
at http://example.com/api/annotations.

General rules are those common to most REST APIs. If a resource cannot
be found, return 404 NOT FOUND. If an action is not permitted for
the current user, return 401 NOT AUTHORIZED, otherwise return
200 OK. Send JSON text with the header
Content-Type: application/json.

Below you can find details of the six core endpoints, root,
index, create, read, update, delete, as well as an
optional search API.

WARNING:


The spec below requires you return 303 SEE OTHER from the create
and update endpoints. Ideally this is what you’d do, but
unfortunately most modern browsers (Firefox and Webkit) still make a
hash of CORS requests when they include redirects. A simple workaround
for the time being is to return 200 OK and the JSON annotation that
would be returned by the read endpoint in the body of the
create and update responses. See bugs in
Chromium [http://code.google.com/p/chromium/issues/detail?id=70257]
and Webkit [https://bugs.webkit.org/show_bug.cgi?id=57600].


root


	method: GET

	path: /

	returns: object containing store metadata, including API version



Example:

$ curl http://example.com/api/
{
  "name": "Annotator Store API",
  "version": "2.0.0"
}








index


	method: GET

	path: /annotations

	returns: a list of all annotation objects



Example (see annotation-format for details of the format of
individual annotations):

$ curl http://example.com/api/annotations
[
  {
    "text": "Example annotation text",
    "ranges": [ ... ],
    ...
  },
  {
    "text": "Another annotation",
    "ranges": [ ... ],
    ...
  },
  ...
]








create


	method: POST

	path: /annotations

	receives: an annotation object, sent with
Content-Type: application/json

	returns: 303 SEE OTHER redirect to the appropriate read
endpoint



Example:

$ curl -i -X POST \
       -H 'Content-Type: application/json' \
       -d '{"text": "Annotation text"}' \
       http://example.com/api/annotations
HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...








read


	method: GET

	path: /annotations/<id>

	returns: an annotation object



Example:

$ curl http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
{
  "id": "d41d8cd98f00b204e9800998ecf8427e",
  "text": "Annotation text",
  ...
}








update


	method: PUT

	path: /annotations/<id>

	receives: a (partial) annotation object, sent with
Content-Type: application/json

	returns: 303 SEE OTHER redirect to the appropriate read
endpoint



Example:

$ curl -i -X PUT \
       -H 'Content-Type: application/json' \
       -d '{"text": "Updated annotation text"}' \
       http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...








delete


	method: DELETE

	path: /annotations/<id>

	returns: 204 NO CONTENT, and – obviously – no content



$ curl -i -X DELETE http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
HTTP/1.0 204 NO CONTENT
Content-Length: 0










Search API

You may also choose to implement a search API, which can be used by the
Store plugin’s loadFromSearch configuration option.


search


	method: GET

	path: /search?text=foobar

	returns: an object with total and rows fields. total is
an integer denoting the total number of annotations matched by the
search, while rows is a list containing what might be a subset of
these annotations.

	If implemented, this method should also support the limit and
offset query parameters for paging through results.



$ curl http://example.com/api/search?text=annotation
{
  "total": 43127,
  "rows": [
    {
      "id": "d41d8cd98f00b204e9800998ecf8427e",
      "text": "Updated annotation text",
      ...
    },
    ...
  ]
}










Storage Implementations


	Reference backend, a Python Flask app:
https://github.com/okfn/annotator-store (in particular, see
store.py [https://github.com/okfn/annotator-store/blob/master/annotator/store.py],
although be aware that this file also deals with authentication and
authorization, making the code a good deal more complex than would be
required to implement what is described above).

	PHP (Silex) and MongoDB-based basic implementation:
https://github.com/julien-c/annotator-php (in particular, see
index.php [https://github.com/julien-c/annotator-php/blob/master/index.php]).









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Storage 
 
      

    


    
      
          
            
  
Warning

OUT OF DATE DOCUMENTATION

The paragraphs that follow contain out-of-date documentation that we haven’t
yet got round to updating.




Auth plugin

The Auth plugin complements the store by providing
authentication for requests. This may be necessary if you are running
the Store on a separate domain or using a third party service like
annotateit.org.

The plugin works by requesting an authentication token from the local
server and then provides this in all requests to the store. For more
details see the specification.


Usage

Adding the Auth plugin to the annotator is very simple. Simply add the
annotator to the page using the .annotator() jQuery plugin. Then
call the .addPlugin() method eg.
.annotator('addPlugin', 'Auth').

var content = $('#content'));
content.annotator('addPlugin', 'Auth', {
  tokenUrl: '/auth/token'
});








Options

The following options are available to the Auth plugin.


	tokenUrl: The URL to request the token from. Defaults to
/auth/token.

	token: An auth token. If this is present it will not be requested
from the server. Defaults to null.

	autoFetch: Whether to fetch the token when the plugin is loaded.
Defaults to true




Token format

For details of the token format, see the page on Annotator’s
Authentication system.









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 

          	Storage 
 
      

    


    
      
          
            
  
Annotator.Storage.HTTPStorage component

This storage component sends annotations (serialised as JSON) to a server that
implements the Storage API: manufacturing/widgets.


Methods

The following methods are implemented by this component.


	create: POSTs an annotation (serialised as JSON) to the server.
Called when the annotator publishes the “annotationCreated” event.
The annotation is updated with any data (such as a newly created id)
returned from the server.

	update: PUTs an annotation (serialised as JSON) on the server
under its id. Called when the annotator publishes the
“annotationUpdated” event. The annotation is updated with any data
(such as a newly created id) returned from the server.

	destroy: Issues a DELETE request to server for the annotation.

	search: GETs all annotations relevant to the query. Should return
a JSON object with a rows property containing an array of
annotations.






Backends

For an example backend check out our
annotator-store [https://github.com/openannotation/annotator-store]
project on GitHub which you can use or examine as the basis for your own store.
If you’re looking to get up and running quickly then
annotateit.org [http://annotateit.org] will store your annotations
remotely under your account.




Interface Overview

This plugin adds no additional UI to the Annotator but will display
error notifications if a request to the store fails.


Warning

OUT OF DATE DOCUMENTATION

The paragraphs that follow contain out-of-date documentation that we haven’t
yet got round to updating.






Usage

Adding the store plugin to the annotator is very simple. Simply add the
annotator to the page using the .annotator() jQuery plugin and
retrieve the annotator object using .data('annotator'). Then add the
Store plugin.

var content = $('#content').annotator();
    content.annotator('addPlugin', 'Store', {
      // The endpoint of the store on your server.
      prefix: '/store/endpoint',

      // Attach the uri of the current page to all annotations to allow search.
      annotationData: {
        'uri': 'http://this/document/only'
      },

      // This will perform a "search" action when the plugin loads. Will
      // request the last 20 annotations for the current url.
      // eg. /store/endpoint/search?limit=20&uri=http://this/document/only
      loadFromSearch: {
        'limit': 20,
        'uri': 'http://this/document/only'
      }
    });






Options

The following options are made available for customisation of the store.


	prefix: The store endpoint.

	annotationData: An object literal containing any data to attach
to the annotation on submission.

	loadFromSearch: Search options for using the “search” action.

	urls: Custom URL paths.

	showViewPermissionsCheckbox: If true will display the “anyone
can view this annotation” checkbox.

	showEditPermissionsCheckbox: If true will display the “anyone
can edit this annotation” checkbox.




prefix

This is the API endpoint. If the server supports Cross Origin Resource
Sharing (CORS) a full URL can be used here. Defaults to /store.

NOTE: The trailing slash should be omitted.

Example:

$('#content').annotator('addPlugin', 'Store', {
  prefix: '/store/endpoint'
});








annotationData

Custom meta data that will be attached to every annotation that is sent
to the server. This will override previous values.

Example:

$('#content').annotator('addPlugin', 'Store', {
  // Attach a uri property to every annotation sent to the server.
  annotationData: {
    'uri': 'http://this/document/only'
  }
});








loadFromSearch

An object literal containing query string parameters to query the store.
If loadFromSearch is set, then we load the first batch of
annotations from the ‘search’ URL as set in options.urls instead of
the registry path ‘prefix/read’. Defaults to false.

Example:

$('#content').annotator('addPlugin', 'Store', {
  loadFromSearch: {
    'limit': 0,
    'all_fields': 1,
    'uri': 'http://this/document/only'
  }
});








urls

The server URLs for each available action (excluding prefix). These
URLs can point anywhere but must respond to the appropriate HTTP method.
The :id token can be used anywhere in the URL and will be replaced
with the annotation id.

Methods for actions are as follows:

create:  POST
update:  PUT
destroy: DELETE
search:  GET





Example:

$('#content').annotator('addPlugin', 'Store', {
  urls: {
    // These are the default URLs.
    create:  '/annotations',
    update:  '/annotations/:id',
    destroy: '/annotations/:id',
    search:  '/search'
  }
}):















          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Plugin development


Getting Started

Building a plugin is very simple. Simply attach a function that creates
your plugin to the Annotator.Plugin namespace. The function will
receive the following arguments.


	element

	The DOM element that is currently being annotated.



Additional arguments (such as options) can be passed in by the user when
the plugin is added to the Annotator. These will be passed in after the
element.

Annotator.Plugin.HelloWorld = function (element) {
  var myPlugin = {};
  // Create your plugin here. Then return it.
  return myPlugin;
};






Using Your Plugin

Adding your plugin to the annotator is the same as for all supported
plugins. Simply call “addPlugin” on the annotator and pass in the name
of the plugin and any options. For example:

// Setup the annotator on the page.
var content = $('#content').annotator();

// Add your plugin.
content.annotator('addPlugin', 'HelloWorld' /*, any other options */);








Setup

When the annotator creates your plugin it will take the following steps.


	Call your Plugin function passing in the annotated element plus any
additional arguments. (The Annotator calls the function with new
allowing you to use a constructor function if you wish).

	Attaches the current instance of the Annotator to the .annotator
property of the plugin.

	Calls .pluginInit() if the method exists on your plugin.






pluginInit()

If your plugin has a pluginInit() method it will be called after the
annotator has been attached to your plugin. You can use it to set up the
plugin.

In this example we add a field to the viewer that contains the text
provided when the plugin was added.

Annotator.Plugin.Message = function (element, message) {
  var plugin = {};

  plugin.pluginInit = function () {
      this.annotator.viewer.addField({
        load: function (field, annotation) {
          field.innerHTML = message;
        }
      })
  };

  return plugin;
}





Usage:

// Setup the annotator on the page.
var content = $('#content').annotator();

// Add your plugin to the annotator and display the message "Hello World"
// in the viewer.
content.annotator('addPlugin', 'Message', 'Hello World');










Extending Annotator.Plugin

All supported Annotator plugins use a base “class” that has some useful
features such as event handling. To use this you simply need to extend
the Annotator.Plugin function.

// This is now a constructor and needs to be called with `new`.
Annotator.Plugin.MyPlugin = function (element, options) {

  // Call the Annotator.Plugin constructor this sets up the .element and
  // .options properties.
  Annotator.Plugin.apply(this, arguments);

  // Set up the rest of your plugin.
};

// Set the plugin prototype. This gives us all of the Annotator.Plugin methods.
Annotator.Plugin.MyPlugin.prototype = new Annotator.Plugin();

// Now add your own custom methods.
Annotator.Plugin.MyPlugin.prototype.pluginInit = function () {
  // Do something here.
};





If you’re using jQuery you can make this process a lot neater.

Annotator.Plugin.MyPlugin = function (element, options) {
  // Same as before.
};

jQuery.extend(Annotator.Plugin.MyPlugin.prototype, new Annotator.Plugin(), {
  events: {},
  options: {
    // Any default options.
  }
  pluginInit: function () {

  },
  myCustomMethod: function () {

  }
});








Annotator.Plugin API

The Annotator.Plugin provides the following methods and properties.


element

This is the DOM element currently being annotated wrapped in a jQuery
wrapper.




options

This is the options object, you can set default options when you create
the object and they will be overridden by those provided when the plugin
is created.




events

These can be either DOM events to be listened for within the
.element or custom events defined by you. Custom events will not
receive the event property that is passed to DOM event listeners.
These are bound when the plugin is instantiated.




publish(name, parameters)

Publish a custom event to all subscribers.


	name: The event name.

	parameters: An array of parameters to pass to the subscriber.






subscribe(name, callback)

Subscribe to a custom event. This can be used to subscribe to your own
events or those broadcast by the annotator and other plugins.


	name: The event name.

	callback: A callback to be fired when the event is published. The
callback will receive any arguments sent when the event is published.






unsubscribe(name, callback)

Unsubscribe from an event.


	name: The event name.

	callback: The callback to be unsubscribed.








Annotator Events

The annotator fires the following events at key points in its operation.
You can subscribe to them using the .subscribe() method. This can be
called on either the .annotator object or if you’re extending
Annotator.Plugin the plugin instance itself. The events are as
follows:


	beforeAnnotationCreated(annotation)

	called immediately before an annotation is created. If you need to modify
the annotation before it is saved use this event.

	annotationCreated(annotation)

	called when the annotation is created use this to store the annotations.

	beforeAnnotationUpdated(annotation)

	as above, but just before an existing annotation is saved.

	annotationUpdated(annotation)

	as above, but for an existing annotation which has just been edited.

	annotationDeleted(annotation)

	called when the user deletes an annotation.

	annotationEditorShown(editor, annotation)

	called when the annotation editor is presented to the user.

	annotationEditorHidden(editor)

	called when the annotation editor is hidden, both when submitted and when
editing is cancelled.

	annotationEditorSubmit(editor, annotation)

	called when the annotation editor is submitted.

	annotationViewerShown(viewer, annotations)

	called when the annotation viewer is shown and provides the annotations
being displayed.

	annotationViewerTextField(field, annotation)

	called when the text field displaying the annotation comment in the viewer
is created.




Example

A plugin that logs annotation activity to the console.

Annotator.Plugin.StoreLogger = function (element) {
  return {
    pluginInit: function () {
      this.annotator
          .subscribe("annotationCreated", function (annotation) {
            console.info("The annotation: %o has just been created!", annotation)
          })
          .subscribe("annotationUpdated", function (annotation) {
            console.info("The annotation: %o has just been updated!", annotation)
          })
          .subscribe("annotationDeleted", function (annotation) {
            console.info("The annotation: %o has just been deleted!", annotation)
          });
    }
  }
};













          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            
  
Annotator Roadmap

This document lays out the planned schedule and roadmap for the future
development of Annotator.

For each release below, the planned features reflect what the core team intend
to work on, but are not an exhaustive list of what could be in the release. From
the release of Annotator 2.0 onwards, we will operate a time-based release
process, and any features merged by the relevant cutoff dates will be in the
release.


Note

This is a living document. Nothing herein constitutes a guarantee that
a given Annotator release will contain a given feature, or that a
release will happen on a specified date.




2.0


What will be in 2.0


	Improved internal API

	UI component library (the UI was previously “baked in” to Annotator)

	Support (for most features) for Internet Explorer 8 and up

	Internal data model consistent with Open Annotation [http://www.openannotation.org/]

	A (beta-quality) storage component that speaks OA JSON-LD

	Core code translated from CoffeeScript to JavaScript






Schedule

The following dates are subject to change as needed.







	November 15, 2014
	Annotator 2.0 alpha; major feature freeze


	December 1, 2014
	Annotator 2.0 beta; complete feature freeze


	January  15, 2015
	Annotator 2.0 RC1; translation string freeze


	2 weeks after RC1
	Annotator 2.0 final (or RC2 if needed)





The long period between a beta release and RC1 takes account of a) Christmas and
the holiday season and b) time for other developers to test and report bugs.






2.1

The main goals for this release, which we aim to ship by May 1, 2015 (with a
major feature freeze on Mar 15):


	Support for selections made using the keyboard

	Support in the core for annotation on touch devices

	Support for multiple typed selectors in annotations

	Support for components which resolve (‘reanchor’) an annotation’s selectors
into a form suitable for display in the page






2.2

The main goals for this release, which we aim to ship by Aug 1, 2015 (with a
major feature freeze on Jun 15):


	Support for annotation of additional media types (images, possibly video) in
the core






2.3

The main goals for this release, which we aim to ship by Nov 1, 2015 (with a
major feature freeze on Sep 15):


	Improved highlight rendering (faster, doesn’t modify underlying DOM)

	Replace existing XPath-based selector code with Rangy [https://github.com/timdown/rangy]









          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	Annotator 2.0.0-dev.2 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  _static/down.png





_static/ajax-loader.gif





storage.html


    
      Navigation


      
        		
          index


        		Annotator 2.0.0-dev.2 documentation »

 
      


    


    
      
          
            
  
Storage


Some kind of storage is needed to save your annotations after you leave
a web page.


To do this you can use the plugins/store and a remote JSON API. This
page describes the API expected by the Store plugin, and implemented by
the reference backend [https://github.com/okfn/annotator-store]. It
is this backend that runs the AnnotateIt [http://annotateit.org] web
service.



Core storage API


The storage API is defined in terms of a prefix and a number of
endpoints. It attempts to follow the principles of
REST [http://en.wikipedia.org/wiki/Representational_state_transfer],
and emits JSON documents to be parsed by the Annotator. Each of the
following endpoints for the storage API is expected to be found on the
web at prefix + path. For example, if the prefix were
http://example.com/api, then the index endpoint would be found
at http://example.com/api/annotations.


General rules are those common to most REST APIs. If a resource cannot
be found, return 404 NOT FOUND. If an action is not permitted for
the current user, return 401 NOT AUTHORIZED, otherwise return
200 OK. Send JSON text with the header
Content-Type: application/json.


Below you can find details of the six core endpoints, root,
index, create, read, update, delete, as well as an
optional search API.


WARNING:




The spec below requires you return 303 SEE OTHER from the create
and update endpoints. Ideally this is what you’d do, but
unfortunately most modern browsers (Firefox and Webkit) still make a
hash of CORS requests when they include redirects. A simple workaround
for the time being is to return 200 OK and the JSON annotation that
would be returned by the read endpoint in the body of the
create and update responses. See bugs in
Chromium [http://code.google.com/p/chromium/issues/detail?id=70257]
and Webkit [https://bugs.webkit.org/show_bug.cgi?id=57600].



root



		method: GET


		path: /


		returns: object containing store metadata, including API version





Example:


$ curl http://example.com/api/
{
  "name": "Annotator Store API",
  "version": "2.0.0"
}









index



		method: GET


		path: /annotations


		returns: a list of all annotation objects





Example (see Annotation format for details of the format of
individual annotations):


$ curl http://example.com/api/annotations
[
  {
    "text": "Example annotation text",
    "ranges": [ ... ],
    ...
  },
  {
    "text": "Another annotation",
    "ranges": [ ... ],
    ...
  },
  ...
]









create



		method: POST


		path: /annotations


		receives: an annotation object, sent with
Content-Type: application/json


		returns: 303 SEE OTHER redirect to the appropriate read
endpoint





Example:


$ curl -i -X POST \
       -H 'Content-Type: application/json' \
       -d '{"text": "Annotation text"}' \
       http://example.com/api/annotations
HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...









read



		method: GET


		path: /annotations/<id>


		returns: an annotation object





Example:


$ curl http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
{
  "id": "d41d8cd98f00b204e9800998ecf8427e",
  "text": "Annotation text",
  ...
}









update



		method: PUT


		path: /annotations/<id>


		receives: a (partial) annotation object, sent with
Content-Type: application/json


		returns: 303 SEE OTHER redirect to the appropriate read
endpoint





Example:


$ curl -i -X PUT \
       -H 'Content-Type: application/json' \
       -d '{"text": "Updated annotation text"}' \
       http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
HTTP/1.0 303 SEE OTHER
Location: http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
...









delete



		method: DELETE


		path: /annotations/<id>


		returns: 204 NO CONTENT, and – obviously – no content





$ curl -i -X DELETE http://example.com/api/annotations/d41d8cd98f00b204e9800998ecf8427e
HTTP/1.0 204 NO CONTENT
Content-Length: 0











Search API


You may also choose to implement a search API, which can be used by the
Store plugin’s loadFromSearch configuration option.



search



		method: GET


		path: /search?text=foobar


		returns: an object with total and rows fields. total is
an integer denoting the total number of annotations matched by the
search, while rows is a list containing what might be a subset of
these annotations.


		If implemented, this method should also support the limit and
offset query parameters for paging through results.





$ curl http://example.com/api/search?text=annotation
{
  "total": 43127,
  "rows": [
    {
      "id": "d41d8cd98f00b204e9800998ecf8427e",
      "text": "Updated annotation text",
      ...
    },
    ...
  ]
}











Storage Implementations



		Reference backend, a Python Flask app:
https://github.com/okfn/annotator-store (in particular, see
store.py [https://github.com/okfn/annotator-store/blob/master/annotator/store.py],
although be aware that this file also deals with authentication and
authorization, making the code a good deal more complex than would be
required to implement what is described above).


		PHP (Silex) and MongoDB-based basic implementation:
https://github.com/julien-c/annotator-php (in particular, see
index.php [https://github.com/julien-c/annotator-php/blob/master/index.php]).


		eXanore an eXist-db library implementing the Annotator Storage API (currently under development)
https://github.com/bwbohl/eXanore











          

      

      

    


    
        © Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

architecture.html


    
      Navigation


      
        		
          index


        		Annotator 2.0.0-dev.2 documentation »

 
      


    


    
      
          
            
  
Annotator architecture


There are questions about the overall architecture of Annotator 2.0 that remain
unanswered. This document intends to lay out some of the higher-level
architectural issues and make some proposals for review by others.


First, a reminder of why we’re restructuring Annotator at all. There are two
overarching reasons to do this work:



		To better serve the needs of more advanced users of the Annotator
codebase [1]. In particular, in Annotator 1.2.x parts of the UI are
hard-coded into the core of Annotator and are not easily removed or swapped.


We want Annotator 2.0 to serve users who don’t want or need all of
Annotator’s features. In particular, it should be possible to use the
underlying utilities for building annotation applications, without requiring
that you use Annotator’s UI.





		To put Annotator in a better position for the future, so that we can begin
to extend the features provided by the library in a sustainable way. Adding
features such as image, video, or PDF annotation to Annotator 1.2.x is very
hard to achieve in a way that is both simple and reusable.


Our goal with Annotator 2.0 is to reflect on the lessons learned from the
naive plugin system of Annotator 1.2, and build a much more powerful
annotation library without adding unnecessary complexit.









Current work


Work to solve these issues can already be found on the master branch of the
Annotator repository. Item 1) has been substantially addressed, by splitting out
the current Annotator UI into reusable library components.


We (the maintainers) have been talking about some of the problems posed by item
2), and how the current restructuring may fall short of adequately setting us up
for the future.


Here’s the current state of play on the master branch:


+-----------------------------------------------------------+
|                                                           |
|                         Annotator                         |
|                                                           |
+-----------------------------------------------------------+

+-------------------------------+  +-----------+  + - - - - -
|                               |  |           |     Other
|        Annotator.Core         |  | DefaultUI |  |  Lifecycle
|                               |  |           |     Plugins...
+-------------------------------+  +-----------+  + - - - - -

+---------+  +-------+  +-------+
|         |  |       |  |       |
| Storage |  | Authz |  | Ident |
|         |  |       |  |       |
+---------+  +-------+  +-------+






Annotator is a composition of a default UI, a storage component, and a number of
other swappable components.


The key concept of the above structure (not intended to be apparent from the
diagram) is that the entire lifecycle of an annotation is mediated through the
storage.


When annotations are to be created/updated, a user or a piece of UI code tells
the storage plugin to create/update an annotation [2]. When this happens
the familiar “lifecycle hooks” are run:


beforeAnnotationCreated
annotationCreated
beforeAnnotationUpdated
annotationUpdated






There remains a class of generic plugins known as “lifecycle plugins,” which can
respond to these hooks (previously implemented as events). The order in which
lifecycle hooks is called is undefined, but the hook callbacks can defer or
cancel the annotation lifecycle event (by returning a Promise object).


There are a number of issues with this design:



		Persistence (through the storage component) is on the critical path for CRUD
of annotations. This isn’t necessarily a problem, but it’s probably
unnecessary. Moreover, the question of how to deal adequately with errors
from a backend accessed over an unreliable network has not been addressed and
would be complicated by the current hook system.


		Responsibilities for (and scheduling of) serialization and deserialization of
annotations are not clear. Annotations are bare JavaScript objects passed
around. Unserializable properties (such as references to DOM Nodes) are kept
in a magic _local field on the annotation.


		The naming and sequencing of lifecycle events is messy. We are currently
conflating two processes: the persistence of user actions (“create a new
annotation”, “delete this annotation”), and the attachment and updating of
annotations in the DOM (“I loaded this annotation, draw it”, “This annotation
has been deleted, remove it”).








A better option?


So, after some discussion with my co-maintainers, I’d like to make a proposal
for a better option that resolves some of these issues, while also helping us to
understand what better first-class tools (i.e. DOM APIs) for annotating might
look like in the future.


+ - - - - - - - - - - +   +-----------------------------------------------+
                          |                                               |
|     Other clients   |   |                   Annotator                   |
                          |                                               |
+ - - + - - - - ^ - - +   +-----------------------------------------------+
      |         |
      |         |         +---------+  +-----------+    +------+  +-------+
      |         |         |         |  |           |    |      |  |       |
      |         |         | Storage |  |    UI     |    | Auth |  | Ident |
      |         |         |         |  |           |    |      |  |       |
      |         |         +---------+  +-----------+    +------+  +-------+
      |         |
+-----v---------+----------------------------------+
|                                                  |
|        DOMAnnotations (window.Annotations)       |
|                                                  |
+--------------------------------------------------+






The most important ideas are as follows:



		Persisted state and DOM state are not the same thing, and should be treated
separately. A new DOMAnnotations API (of which more later) serves as the
model of DOM state. It speaks in terms of first-class Annotation objects,
and is responsible for managing and querying the state of annotations on the
current document.


		Persistence is just another client of the DOMAnnotations model. Rather
than waiting on an HTTP round-trip before drawing an Annotation, we focus
instead on regularly updating the state of the backend to reflect the current
state of annotation on the document [3].


		Annotator is but one client of the underlying annotation data model, and
shouldn’t have privileged access to it.





So, what are the responsibilities of the DOMAnnotations layer and how do
they differ from those of Annotator? The key distinction is that
DOMAnnotation is an API to manipulate and query the current state of
annotations on the current document. It knows nothing about persistence, and
can only be used to create, update, and remove annotations from the currently
loaded DOM. Annotator is a client of these APIs and provides its own tools for
creating, editing, displaying, and eventually persisting annotations.


A proposed set of APIs for DOMAnnotations is included below, but it may help
to provide a few examples of how particular use cases would work.



Creating a annotation on text content



		User makes a selection of some text in the document.





		Annotator shows a widget that allows a user to communicate intent to
annotate.





		The user activates this and is presented with an editor to allow them to add
their notes. They submit the editor.





		Annotator creates an annotation attached to the underlying ranges selected by
the user using the DOMAnnotations APIs:


var body = getAnnotationBody();   # The body of the annotation
var ranges = getSelectedRanges(); # The ranges selected by the user

var target = window.Annotations.TextTarget(ranges);
var annotation = document.createAnnotation();
annotation.addBody(body);
annotation.addTarget(target);









		This sequence of steps fires a custom DOM Event, annotationcreate, on the
enclosing document, as soon as the first target is added.





		The Annotator storage component is listening for this annotationcreate
event. At its own discretion it sends requests to the backend storage, which
will likely included a serialized copy of the annotation, which can be
obtained using a simple:


JSON.stringify(annotation);






This is possible because annotations are first-class objects that can provide
a .toJSON() method. Annotation bodies and targets can also be first-class
objects that can do likewise.











Updating an annotation



		User indicates that they want to make a change to an annotation.





		Annotator shows an editor and the user makes their intended edits.





		Annotator updates the annotation [4]:


annotation.removeBody(annotation.bodies[0])
annotation.addBody(newBody)









		This sequence of steps fires a custom DOM Event, annotationchange, on the
enclosing document.





		The Annotator storage component is listening for this annotationchange
event. At its own discretion it sends requests to the backend storage.











Loading an annotation from a remote store



		The Annotator storage component retrieves a serialized version of an
annotation from its backend.





		Annotator uses whatever internal mechanism it needs to in order to find the
part of the document to which this serialized annotation is intended to be
attached. This may include fuzzy matching, awareness of annotations which
refer to unrendered parts of the DOM, etc.





		If Annotator can reattach the annotation, it does so in the usual way:


var annotation;
var bodies = getBodies(serializedAnnotation);
var targets = getTargets(serializedAnnotation);

if (targets.length > 0) {
    annotation = document.createAnnotation();
    for (<body in bodies>) {
        annotation.addBody(body);
    }
    for (<target in targets) {
        // target at this point is an object that contains references to
        // nodes within the DOM
        annotation.addTarget(target);
    }
}









		Relevant pieces of the Annotator UI (highlights, etc.) are listening to
annotationcreate events and render themselves appropriately.













Proposed DOMAnnotations APIs


We introduce the Annotations global object, to serve as a canonical
location for annotation related types. In the short term, this can also
be used as a site for calling a polyfill, i.e.


Annotations.polyfill()







Creating an annotation


var annotation = <Annotations | document>.createAnnotation();  # => Annotation






Rationale: by analogy with document.createElement(tagname), or
document.createRange(). Returns an object of type Annotation.





Adding and removing targets


annotation.addTarget(new Annotations.TextTarget(range));  # => void






and/or


annotation.addTarget(new Annotations.ImageTarget(el, {x: 0, y: 0, w: 100, h: 50}));  # => void






targets are (by analogy with Range objects) live objects, in the sense
that mutating one previously added to an annotation is a valid operation.


We also provide:


annotation.removeTarget(target);  # => void






Also, since addTarget is a void function, and by analogy with
selection.removeAllRanges(), it might be nice to provide:


annotation.removeAllTargets();  # => void









Accessing annotation targets


annotation.targets






Rationale: few if any DOM natives have getter methods. We will need to
ensure that this property is appropriately isolated from internal state
or is immutable.





Removing an annotation


<Annotations | document>.removeAnnotation(annotation);






Rationale: this could conceivably be an instance method of
Annotation called remove(), but consider the following scenario.
I want to make an annotation that has targets in two different documents
(for example, to compare usage of a key word in two different texts). In
some circumstances it is possible to have access to more than one
document within a single execution context (e.g. iframes satisfying
SOP [https://en.wikipedia.org/wiki/Same-origin_policy]), and I might
want to do something like:


var annotation = document.createAnnotation();
var documentB = document.querySelector('iframe').contentDocument;

var rangeA = document.createRange();
rangeA.selectNode(document.querySelector('h1'));

var rangeB = documentB.createRange();
rangeB.selectNode(documentB.querySelector('h1'));

annotation.addTarget(Annotations.TextTarget([rangeA]));
annotation.addTarget(Annotations.TextTarget([rangeB]));






This now raises the question of should I be able to find this annotation
by calling


documentB.getAnnotations(documentB.querySelector('h1'));






My inclination is that we should, which presupposes that
Annotations can be added and removed to different documents
independently, leading to the proposed API of
document.removeAnnotation(<annotation>).





Querying annotations


<Annotations | document>.getAnnotations(<Node | NodeList>);  # => Array[Annotation]









Events


Adding the first target to a new Annotation triggers an annotationcreate
event (which does not bubble and is not cancelable) at the document associated
with the annotation.. The annotation is available at event.detail.annotation.


Modifying an annotation (or any of its subproperties: targets, bodies, other
data, etc.) fires an annotationchange event (which does not bubble and is
not cancelable) at the document associated with the annotation. In the event
that a target is removed, the event is also triggered on the nodes of the
removed target. The annotation is available at event.detail.annotation.


Removing an annotation triggers an annotationremove event (which does not
bubble and is not cancelable) at the document associated with the annotation.
The annotation is available at event.detail.annotation.




Footnotes





		[1]		We intend to do this while maintaining a similar ease-of-use for
simpler needs.









		[2]		In fact, these calls are mediated through a wrapper called the
StorageAdapter, but this detail does not affect the current
discussion.









		[3]		This idea obviously nods towards many others who have done
serious thinking in this area: Offline First [http://offlinefirst.org/], SLEEP [http://dataprotocols.org/sleep/], CouchDB [http://dataprotocols.org/couchdb-replication/].









		[4]		Open question: is there a nicer way to allow annotations to know
that bodies have changed without requiring removal and addition of
bodies like this.














          

      

      

    


    
        © Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

_static/minus.png





search.html


    
      Navigation


      
        		
          index


        		Annotator 2.0.0-dev.2 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, The Annotator project contributors.
      Created using Sphinx 1.2.2.
    

  

_static/comment-close.png





_static/up.png





_static/comment.png





_static/file.png





_static/up-pressed.png





_static/plus.png





_static/comment-bright.png





_static/down-pressed.png





